
INTEGRATED CIRCUITS

Objective specification File under Integrated Circuits, IC19 1998 Aug 24

FEATURES

- 1.2 Gbits/s data input, both Current-Mode Logic (CML) and Positive Emitter Coupled Logic (PECL) compatible; maximum 800 mV (peak-to-peak value)
- Adaptive laser output control, stabilizing optical ONE and ZERO levels
- Optional external (non-adaptive) control of laser modulation and biasing currents
- Automatic Laser Shut-down (ALS)
- · Few external components required
- Rise and fall times typically 120 ps
- Jitter <50 mUI (peak-to-peak value)
- RF output current sinking capability of 60 mA
- Bias current sinking capability of 90 mA
- Power dissipation typically 475 mW
- Low cost LQFP32 plastic package
- Single 5 V power supply.

TZA3041AHL

• Laser alarm output for signalling extremely low and high bias current conditions.

TZA3041BHL

• Loop mode for testing 1.2 Gbits/s optical interfaces; CML and PECL compatible.

TZA3041U

• Naked die version with combined bias alarm and loop mode functionality.

ORDERING INFORMATION

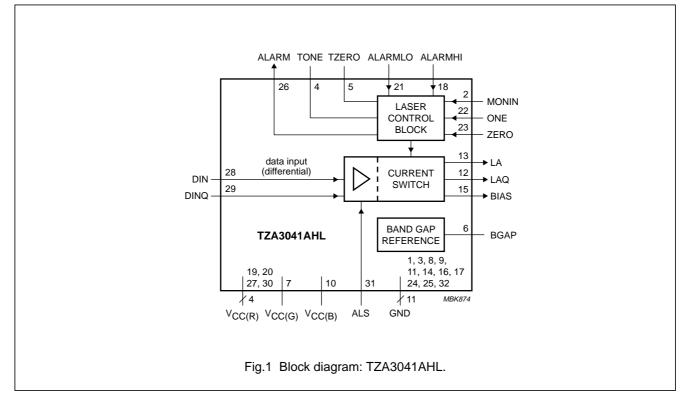
TZA3041AHL; TZA3041BHL; TZA3041U

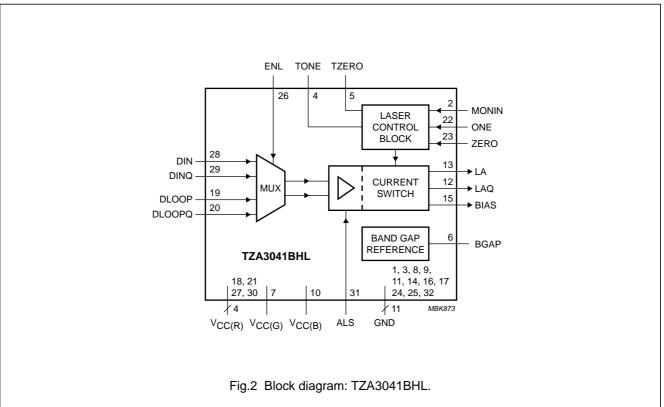
APPLICATIONS

- Gigabit Ethernet/Fibre Channel optical transmission systems
- Gigabit Ethernet/Fibre Channel optical laser modules.

DESCRIPTION

The TZA3041AHL, TZA3041BHL and TZA3041U are fully integrated laser drivers for Gigabit Ethernet/Fibre Channel (1.2 Gbits/s) systems, incorporating the RF path between the data multiplexer and the laser diode. Since the bias and modulation control circuits are integrated on the IC, the external component count is low (only decoupling capacitors and adjustment resistors are required).


The TZA3041AHL features an alarm function for signalling extreme bias current conditions. The alarm low and high threshold levels can be adjusted to suit the application using only a resistor. An additional RF data input is provided with the TZA3041BHL to facilitate remote (loop mode) system testing.


The TZA3041U is a naked die version for use in compact laser module designs. The die contains 40 pads and features the combined functionality of the TZA3041AHL and TZA3041BHL.

TYPE		PACKAGE		
NUMBER	NAME	DESCRIPTION	VERSION	
TZA3041AHL	LQFP32	plastic low profile quad flat package; 32 leads; body $5 \times 5 \times 1.4$ mm	SOT401-1	
TZA3041BHL	LQFF32	plastic low profile quad flat package, 52 leads, body 5 × 5 × 1.4 mm	301401-1	
TZA3041U	_	naked die; 2000 \times 2000 \times 380 μm	-	

TZA3041AHL; TZA3041BHL; TZA3041U

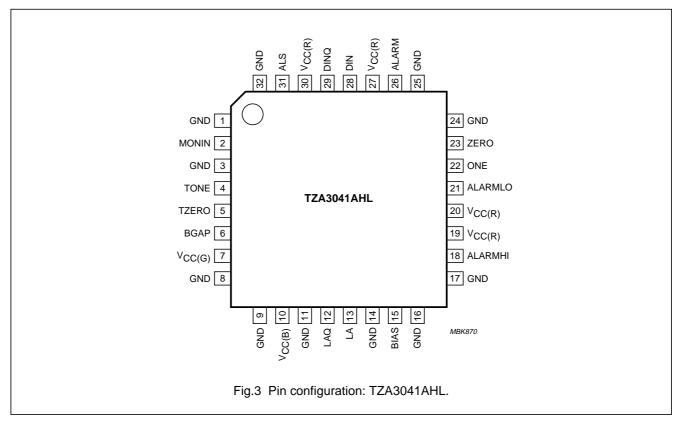
BLOCK DIAGRAMS

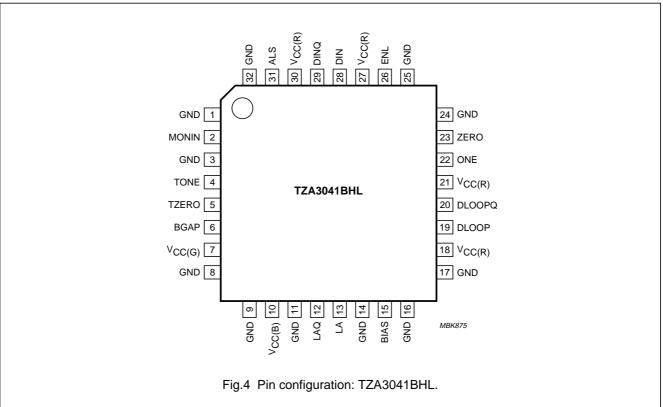
TZA3041AHL; TZA3041BHL; TZA3041U

PINNING

TZA3041AHL

SYMBOL	PIN	DESCRIPTION	
GND	1	ground	
MONIN	2	monitor photodiode current input	
GND	3	ground	
TONE	4	connection for external capacitor used to set optical ONE control loop time constant (optional)	
TZERO	5	connection for external capacitor used to set optical ZERO control loop time constant (optional)	
BGAP	6	connection for external band gap decoupling capacitor	
V _{CC(G)}	7	supply voltage; note 1	
GND	8	ground	
GND	9	ground	
V _{CC(B)}	10	supply voltage; note 1	
GND	11	ground	
LAQ	12	inverted laser modulation output	
LA	13	laser modulation output	
GND	14	ground	
BIAS	15	laser bias current output	
GND	16	ground	
GND	17	ground	
ALARMHI	18	maximum bias current alarm reference level input	
V _{CC(R)}	19	supply voltage; note 1	
V _{CC(R)}	20	supply voltage; note 1	
ALARMLO	21	minimum bias current alarm reference level input	
ONE	22	optical ONE reference level input	
ZERO	23	optical ZERO reference level input	
GND	24	ground	
GND	25	ground	
ALARM	26	alarm output	
V _{CC(R)}	27	supply voltage; note 1	
DIN	28	data input	
DINQ	29	inverted data input	
V _{CC(R)}	30	supply voltage; note 1	
ALS	31	automatic laser shut-down input	
GND	32	ground	


TZA3041BHL


SYMBOL	PIN	DESCRIPTION	
GND	1	ground	
MONIN	2	monitor photodiode current input	
GND	3	ground	
TONE	4	connection for external capacitor used to set optical ONE control loop time constant (optional)	
TZERO	5	connection for external capacitor used to set optical ZERO control loop time constant (optional)	
BGAP	6	connection for external band gap decoupling capacitor	
V _{CC(G)}	7	supply voltage; note 1	
GND	8	ground	
GND	9	ground	
V _{CC(B)}	10	supply voltage; note 1	
GND	11	ground	
LAQ	12	inverted laser modulation output	
LA	13	laser modulation output	
GND	14	ground	
BIAS	15	laser bias current output	
GND	16	ground	
GND	17	ground	
V _{CC(R)}	18	supply voltage; note 1	
DLOOP	19	loop mode data input	
DLOOPQ	20	loop mode inverted data input	
V _{CC(R)}	21	supply voltage; note 1	
ONE	22	optical ONE reference level input	
ZERO	23	optical ZERO reference level input	
GND	24	ground	
GND	25	ground	
ENL	26	loop mode enable input	
V _{CC(R)}	27	supply voltage; note 1	
DIN	28	data input	
DINQ	29	inverted data input	
V _{CC(R)}	30	supply voltage; note 1	
ALS	31	automatic laser shutdown input	
GND	32	ground	

Note to Tables TZA3041AHL and TZA3041BHL

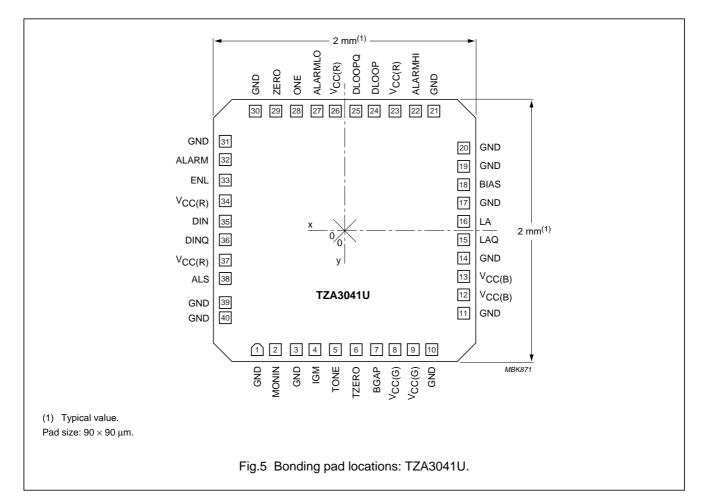
1. See Section "Power supply connections".

TZA3041AHL; TZA3041BHL; TZA3041U

TZA3041AHL; TZA3041BHL; TZA3041U

PAD CONFIGURATION

TZA3041U (naked die)


CYMPOL	PAD	DESCRIPTION		COORDINATES ⁽¹⁾		
SYMBOL	PAD	DESCRIPTION	x	У		
GND	1	ground	-664	-910		
MONIN	2	monitor photodiode current input	-524	-910		
GND	3	ground	-367	-910		
IGM	4	not used (leave unbonded)	-227	-910		
TONE	5	connection for external capacitor to set optical ONE control loop time constant (optional)	-70	-910		
TZERO	6	connection for external capacitor to set optical ZERO control loop time constant (optional)	+87	-910		
BGAP	7	connection for external band gap decoupling capacitor	+244	-910		
V _{CC(G)}	8	supply voltage	+384	-910		
V _{CC(G)}	9	supply voltage	+524	-910		
GND	10	ground	+664	-910		
GND	11	ground	+910	-630		
V _{CC(B)}	12	supply voltage	+910	-490		
V _{CC(B)}	13	supply voltage	+910	-350		
GND	14	ground	+910	-210		
LAQ	15	inverted laser modulation output	+910	-70		
LA	16	laser modulation output		+70		
GND	17	ground		+210		
BIAS	18	laser bias current output		+350		
GND	19	ground	+910	+490		
GND	20	ground	+910	+630		
GND	21	ground	+681	+910		
ALARMHI	22	maximum bias current alarm reference level input	+541	+910		
V _{CC(R)}	23	supply voltage	+384	+910		
DLOOP	24	loop mode data input	+227	+910		
DLOOPQ	25	loop mode inverted data input	+87	+910		
V _{CC(R)}	26	supply voltage	-70	+910		
ALARMLO	27	minimum bias current reference level input	-210	+910		
ONE	28	optical ONE reference level input	-367	+910		
ZERO	29	optical ZERO reference level input	-524	+910		
GND	30	ground	-681	+910		
GND	31	ground	-910	+681		
ALARM	32	alarm output	-910	+541		
ENL	33	loop mode enable input	-910	+384		
V _{CC(R)}	34	supply voltage	-910	+227		
DIN	35	data input	-910	+70		

TZA3041AHL; TZA3041BHL; TZA3041U

SYMBOL	PAD	DESCRIPTION		COORDINATES ⁽¹⁾		
STWIDOL		x	У			
DINQ	36	inverted data input	-910	-70		
V _{CC(R)}	37	supply voltage	-910	-227		
ALS	38	automatic laser shut-down input	-910	-367		
GND	39	ground	-910	-551		
GND	40	ground	-910	-664		

Note

1. Coordinates represent the position of the centre of the pad, in μ m with respect to the centre of the die.

FUNCTIONAL DESCRIPTION

The TZA3041AHL, TZA3041BHL and TZA3041U laser drivers accept a 1. 2 Gbits/s input data stream (CML or PECL compatible) and generate an output signal with sufficient current to drive a solid state laser. They also contain control circuitry for stabilizing the laser optical power levels representing logic 1 and logic 0. The input buffers present a high impedance to the data stream on the DIN and DINQ differential inputs. The input signal can be CML, approximately 200 mV (peak-to-peak value) below the supply voltage or PECL up to 800 mV (peak-to-peak value) compatible. The input can be configured to accept CML signals by connecting external 50 Ω pull-up resistors to V_{CC(R)}. If PECL compatibility is required, the usual Thevenin termination can be applied.

For ECL signals (negative to ground), the inputs should be AC-coupled to the signal source.

The differential amplifier contains a preamplifier and a main amplifier. The main amplifier is designed to handle the large peak currents required at the output laser driving stage and is insensitive to supply voltage variations. The output signal from the main amplifier drives a current switch which supplies a maximum modulation current of 60 mA through outputs LA and LAQ. The BIAS pin delivers a bias current of up to 90 mA DC for adjusting the laser output to a level above its light emitting threshold.

Automatic laser control

A laser with a Monitor PhotoDiode (MPD) is required for the laser control circuit. The MPD current, which is proportional to the laser emission, is fed into pin MONIN; the current range is 100 to 1000 μ A (peak-to-peak value). The input buffer is optimized to cope with MPD capacitances up to 50 pF. To prevent the input buffer breaking into oscillation with a low capacitance MPD, it is advisable to increase the capacitance to at least the minimum specified value (see Chapter "Characteristics"), by connecting extra capacitance to the MONIN pin.

DC reference currents are applied to pins ZERO and ONE to set the MPD reference levels for laser LOW and laser HIGH. A resistor between $V_{CC(R)}$ and the pin is sufficient; the voltage on the ZERO and ONE pins is held constant at a level 1.5 V below $V_{CC(R)}$. The reference current applied to pin ZERO is multiplied by 4, the reference current flowing into pin ONE is multiplied internally by 16. The above mentioned factors are first estimations and will be finalized after full product characterization.

The reference current and resistor for the optical ONE regulation loop (modulation current control) can be calculated using the following formulae:

$$I_{ONE} = \frac{1}{16} \cdot I_{MPD(ONE)} \qquad [A] \qquad (1)$$

$$\mathsf{R}_{\mathsf{ONE}} = \frac{1.5}{\mathsf{I}_{\mathsf{ONE}}} = \frac{24}{\mathsf{I}_{\mathsf{MPD}\,(\mathsf{ONE})}} \qquad [\Omega] \tag{2}$$

The reference current and resistor for the optical ZERO regulation loop (bias current control) can be calculated using the following formulae:

$$I_{ZERO} = \frac{1}{4} \cdot I_{MPD(ZERO)} \qquad [A] \qquad (3)$$

$$R_{ZERO} = \frac{1.5}{I_{ZERO}} = \frac{6}{I_{MPD(ZERO)}} \quad [\Omega]$$
(4)

TZA3041AHL; TZA3041BHL; TZA3041U

In these formulae, $I_{MPD(ONE)}$ and $I_{MPD(ZERO)}$ represent monitor photodiode current during an optical ONE and an optical ZERO, respectively.

Example: A laser is operating at optical output power levels of 0.3 mW for laser HIGH and 0.03 mW for laser LOW (extinction ratio of 10 dB). Suppose the corresponding MPD currents for this type of laser are 260 μ A and 30 μ A respectively. In this case, a reference

current of $\frac{260 \,\mu A}{16} = 16.25 \,\mu A$ should flow into pin ONE.

This can be set using a current source or simply by connecting a resistor of the appropriate value. The resistor can be connected between V_{CC(R)} and pin ONE. In this example the resistor would be

$$R_{ONE} = \frac{1.5 V}{16.25 \,\mu A} = 92.3 \,k\Omega$$
 (the voltage on pin ONE is

held constant at 1.5 V below V_{CC(R)}).

The reference current at pin ZERO in this example should

be $\frac{30 \,\mu A}{4} = 7.5 \,\mu A$. Again this current should flow into

pin ZERO and can be set using a resistor

 $R_{ZERO} = \frac{1.5 V}{7.5 \mu A} = 200 k\Omega$ (the voltage on pin ZERO is

held constant at 1.5 V below $V_{CC(R)}$).

It should be noted that the MPD current is stabilized, rather than the actual laser optical output power. Deviations between optical output power and MPD current, known as 'tracking errors', cannot be corrected for.

Manual laser override

The automatic laser control function can be overridden by connecting voltage sources to TZERO and TONE to take direct control of, respectively, the bias current source and the modulation current source. The control voltages should be in the range 1.5 to 3.5 V to sweep the modulation current through the range 1 to 60 mA and the bias current through the range 1 to 90 mA. These current ranges are guaranteed. Depending on temperature and manufacturing process spread, current values higher than the specified ranges can be achieved. However, bias and modulation currents in excess of the specified range are not supported and should be avoided.

Automatic laser shut-down

The laser modulation and bias currents can be rapidly switched off by means of the active HIGH ALS input (CMOS). This function allows the circuit to be shut-down in the event of an optical system malfunction.

A 25 k Ω pull-down resistor defaults the ALS input to the non active state.

Bias alarm (TZA3041AHL only)

The bias current alarm circuit detects and flags whenever the bias current falls outside a predefined range. This feature can detect excessive aging and laser malfunctioning. The maximum permitted bias current should be applied to ALARMHI with an attenuation ratio of 1500, the minimum to ALARMLO with an attenuation ratio of 300.

Like the reference currents for the laser current regulation loops, the alarm reference currents can be set using external resistors between $V_{CC(R)}$ and pins ALARMHI and ALARMLO. Resistor values can be calculated using the following formulae:

$$\mathsf{R}_{\mathsf{ALARMHI}} = \frac{1.5 \cdot 1500}{\mathsf{I}_{\mathsf{BIAS}_{\mathsf{MAX}}}} \qquad [\Omega] \tag{5}$$

$$\mathsf{R}_{\mathsf{ALARMLO}} = \frac{1.5 \cdot 300}{\mathsf{I}_{\mathsf{BIAS}_{\mathsf{MIN}}}} \qquad [\Omega] \tag{6}$$

Example: The following reference currents would be required to limit the bias current range to between 6 and 90 mA:

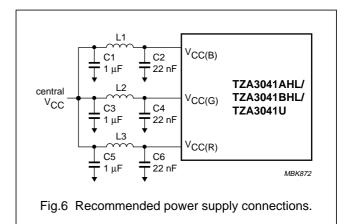
$$I_{ALARMLO} = \frac{6 \text{ mA}}{300} = 20 \text{ }\mu\text{A} \text{ and}$$
$$I_{ALARMHI} = \frac{90 \text{ mA}}{1500} = 60 \text{ }\mu\text{A}$$

The corresponding resistor values would be:

$$R_{ALARMHI} = \frac{1.5 \text{ V} \cdot 1500}{90 \text{ mA}} = 25 \text{ k}\Omega \text{ and}$$
$$R_{ALARMLO} = \frac{1.5 \text{ V} \cdot 300}{6 \text{ mA}} = 75 \text{ k}\Omega$$

If the alarm condition is true, the ALARM output goes HIGH (CMOS level). This signal could be used, for example, to disable the laser driver by driving the ALS input (a latch is needed in between to prevent oscillation).

Loop mode (TZA3041BHL only)


In loop mode, the total system application can be tested. It allows for uninhibited optical transmission through the fibre front end (from the photodiode through the transimpedance stage and the data and clock recovery unit, to the laser driver and via the laser back to the fibre). It should be noted that the optical receiver used in conjunction with the TZA3041BHL must have a loop mode output in order to complete the test loop.

TZA3041AHL; TZA3041BHL; TZA3041U

A HIGH on pin ENL selects loop mode. By default ENL is pulled LOW by a 25 k Ω pull-down resistor.

Power supply connections

Three separate supply domains (labelled $V_{CC(B)}$, $V_{CC(G)}$ and $V_{CC(R)}$) are used to provide isolation between the high-current outputs, the PECL/CML input and the monitor photodiode current input. The three domains should be individually filtered before being connected to a central V_{CC} (see Fig.6). The supply levels should be equal and in accordance with the values specified in Chapter "Characteristics". To maximize power supply isolation, the MPD cathode on the laser should be connected to $V_{CC(G)}$, and the laser diode anode to $V_{CC(B)}$. The inverted laser driver modulation output LAQ is generally not used. To properly balance the output stage, an equalization network with an impedance comparable to the laser is connected to LAQ. This network is referenced to $V_{CC(B)}$.

Grounding the TZA3041U naked die

In addition to the separate V_{CC} domains, the TZA3041U naked die contains three corresponding ground domains. Isolation between the GND domains is limited due to the finite substrate conductance. Although elaborate tests have still to be done, the following grounding strategy is recommended for optimal performance.

Mount the die on a, preferably large and highly conductive, grounded die pad. All GND pads have to be bonded down to the die pad. The external ground is thus optimally combined with the die ground, thereby avoiding ground bouncing problems.

TZA3041AHL; TZA3041BHL; TZA3041U

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 134).

SYMBOL	PARAMETER	MIN.	MAX.	UNIT
V _{CC}	supply voltage	-0.5	+6	V
V _n	DC voltage			
	pin 2: MONIN	1.3	V _{CC} + 0.5	V
	pins 4 and 5: TONE and TZERO	-0.5	V _{CC} + 0.5	V
	pin 6: BGAP	-0.5	+3.2	V
	pin 15: BIAS	-0.5	V _{CC} + 0.5	V
	pins 12 and 13: LAQ and LA	1.3	V _{CC} + 0.5	V
	pins 18 and 21: ALARMHI and ALARMLO (TZA3041AHL)	-0.5	V _{CC} + 0.5	V
	pins 22 and 23: ONE and ZERO	-0.5	V _{CC} + 0.5	V
	pins 19 and 20: data pins DLOOP and DLOOPQ (TZA3041BHL)	-0.5	V _{CC} + 0.5	V
	pins 28 and 29: data pins DIN and DINQ	-0.5	V _{CC} + 0.5	V
	pin 26: CMOS pin ALARM (TZA3041AHL)	-0.5	V _{CC} + 0.5	V
	pin 26: CMOS pin ENL (TZA3041BHL)	-0.5	V _{CC} + 0.5	V
	pin 31: CMOS pin ALS	-0.5	V _{CC} + 0.5	V
l _n	DC input current			
	pin 2: MONIN	0	10	mA
	pins 4 and 5: TONE and TZERO	–10	+10	mA
	pin 6: BGAP	-2.0	+2.5	mA
	pin 15: BIAS	0	200	mA
	pins 12 and 13: LAQ and LA	0	100	mA
	pins 18 and 21: ALARMHI and ALARMLO (TZA3041AHL)	–10	+0.5	mA
	pins 22 and 23: ONE and ZERO	–10	+0.5	mA
	pins 19 and 20: data pins DLOOP and DLOOPQ (TZA3041BHL)	–10	+10	mA
	pins 28 and 29: data pins DIN and DINQ	–10	+10	mA
	pin 26: CMOS pin ALARM (TZA3041AHL)	–10	+10	mA
	pin 26: CMOS pin ENL (TZA3041BHL)	-0.5	+0.5	mA
	pin 31: CMOS pin ALS	-0.5	+0.5	mA
T _{amb}	operating ambient temperature	-40	+85	°C
Tj	junction temperature	-40	+125	°C
T _{stg}	storage temperature	-65	+150	°C

THERMAL CHARACTERISTICS

SYMBOL	PARAMETER	VALUE	UNIT
R _{th(j-s)}	thermal resistance from junction to solder point	15	K/W
R _{th(j-c)}	thermal resistance from junction to case		K/W

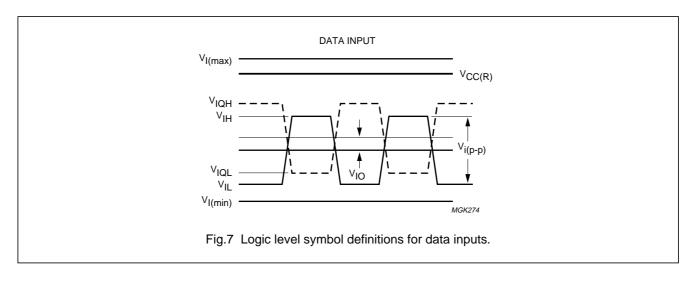
TZA3041AHL; TZA3041BHL; TZA3041U

CHARACTERISTICS

 $V_{CC} = 5 \text{ V}$; $T_{amb} = -40 \text{ to } +85 \text{ }^{\circ}\text{C}$; all voltages referenced to GND.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Supply				•		•
V _{CC}	supply voltage		4.75	5	5.25	V
I _{CC}	supply current no	ote 1	_	65 ⁽²⁾	90 ⁽³⁾	mA
P _{tot}	total power dissipation no	ote 4	_	430 ⁽⁵⁾	810 ⁽⁶⁾	mW
	DIN and DINQ (DLOOP and DLOOPQ or	n TZA3041BHL)				•
V _{i(p-p)}	input voltage (peak-to-peak value) 50	$0 \ \Omega$ measurement	100	250	800	mV
V _{IO}	permitted input offset voltage sy	ystem; note 7	-25	_	+25	mV
VI	input voltage range		V _{CC} - 2000	_	V _{CC} + 250	mV
Zi	low frequency single-ended input impedance		8	10	12	kΩ
CMOS input	s: ALS (ENL on TZA3041BHL)		1	1		
V _{IL}	LOW-level input voltage		_	0.4	0.8	V
V _{IH}	HIGH-level input voltage		3.0	4.0	_	V
CMOS outpu	it: ALARM on TZA3041AHL only		ļ	1		
V _{OL}	LOW-level output voltage		0	_	0.2	V
V _{OH}	HIGH-level output voltage		4.8	_	5	V
Monitor pho	todiode input: MONIN					
l _{i(p-p)}	monitor photodiode current (peak-to-peak value)		100	_	1000	μA
VI	DC input voltage		1.5	1.8	2.0	V
C _{MPD}	monitor photodiode capacitance		30 ⁽⁸⁾	_	50	pF
Control loop	reference currents: ONE and ZERO			•		
I _{ref(ONE)}	optical ONE reference current	ote 9	6	_	65	μA
V _{ref(ONE)}	optical ONE reference voltage re	eferenced to V _{CC(R)}	-1.55	-1.5	-1.45	V
I _{ref(ZERO)}	optical ZERO reference current	ote 9	6	_	65	μA
V _{ref(ZERO)}	optical ZERO reference voltage re	eferenced to $V_{CC(R)}$	-1.55	-1.5	-1.45	V
Control loop	time constants: TONE and TZERO					
V _{TONE}	TONE voltage		1.5	_	3.5	V
gm(tone)	TONE transconductance no	ote 10	_	50	_	mA/V
V _{TZERO}	TZERO voltage		1.5	-	3.5	V
g m(TZERO)	TZERO transconductance no	ote 11	-	80	-	mA/V

TZA3041AHL; TZA3041BHL; TZA3041U


SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Laser modul	ation outputs: LA and LAQ			-		-
I _{OL}	LOW-level output current		_	_	2	mA
I _{OH}	HIGH-level output current		1	-	60	mA
I _{O(ALS)}	output current during ALS		-	-	10	μA
Vo	output voltage		2	-	5	V
t _r , t _f	rise time, fall time		-	120	250	ps
J _{o(p-p)}	intrinsic output jitter (peak-to-peak value)		_	-	50 ⁽¹²⁾	mUI
Bias current	output: BIAS		•	ł		
lo	output current		2	_	90	mA
I _{O(ALS)}	output current during ALS		_	-	10	μA
t _{res(ALS)}	ALS response time	I _{BIAS} = 90 mA; note 13	_	-	1	μs
Vo	output voltage		1	-	5	V
Alarm thresh	old inputs: ALARMHI and ALARMLC	(TZA3041AHL only)	•	•		•
I _{ref(ALARMLO)}	lower alarm threshold reference current	note 14	6	-	65	μA
V _{ref(ALARMLO)}	optical ALARMLO reference voltage	referenced to V _{CC(R)}	-1.55	-1.5	-1.45	V
I _{ref(ALARMHI)}	higher alarm threshold reference current	note 14	6	-	65	μA
V _{ref(ALARMHI)}	optical ALARMHI reference voltage	referenced to V _{CC(R)}	-1.55	-1.5	-1.45	V

Notes

- 1. I_{CC} does not include modulation and bias current through pins LA, LAQ and BIAS.
- 2. Typical value for I_{CC} refers to, but does not include, I_{MOD} = 30 mA and I_{BIAS} = 45 mA.
- 3. The maximum value of I_{CC} refers to, but does not include, I_{MOD} = 60 mA and I_{BIAS} = 90 mA.
- 4. P_{tot} includes modulation and bias current through pins LA, LAQ and BIAS.
- 5. The typical power dissipation is the on-chip dissipation with I_{MOD} = 30 mA and $V_{LA/LAQ}$ = 2 V, I_{BIAS} = 45 mA and V_{BIAS} = 1 V and typical process parameters.
- 6. The maximum power dissipation is the on-chip dissipation with I_{MOD} = 60 mA and $V_{LA/LAQ}$ = 2 V, I_{BIAS} = 90 mA and V_{BIAS} = 1 V and worst case process parameters.
- 7. Measured single-ended.
- 8. A minimum value of capacitance on pin MONIN is required to prevent instability.
- 9. The reference currents can be set by a resistor between V_{CC} and pin ONE or ZERO. The corresponding ZERO level MPD current range is from 24 to 260 μA. The ONE level MPD current range is from 96 to 1040 μA. See Section "Automatic laser control" for a detailed discussion.
- 10. The specified transconductance is the ratio of modulation current at LA and LAQ to voltage at pin TONE, under small signal conditions.
- 11. The specified transconductance is the ratio of biasing current at BIAS to voltage at pin TZERO, under small signal conditions.

TZA3041AHL; TZA3041BHL; TZA3041U

- 12. Measured according to IEEE 802.3z and ANSI X3.230 The electrically generated (current) jitter is assumed to be less than 50% of the optical output jitter.
- 13. The ALS response time is defined as the delay between the onset of the ALS ramp (10% of the HIGH logic level) and the extinction of the bias current (10% of the original value).
- 14. The reference currents can be set by using a resistor between V_{CC(R)} and pin ALARMLO or ALARMHI. The corresponding range of low-bias thresholds is between 1.8 and 19.5 mA. The high-bias threshold range is from 9 to 97.5 mA. See Section "Bias alarm (TZA3041AHL only)" for detailed information.

TZA3041AHL; TZA3041BHL; TZA3041U

APPLICATION INFORMATION

TZA3041AHL

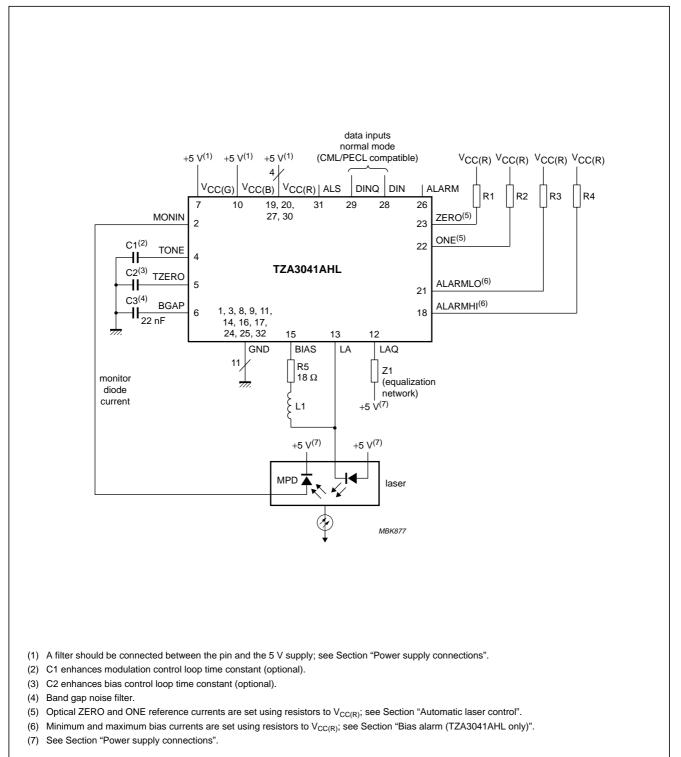


Fig.8 Application diagram showing the TZA3041AHL configured for 1.2 Gbits/s (Gigabit Ethernet/Fibre Channel).

TZA3041AHL; TZA3041BHL; TZA3041U

TZA3041BHL

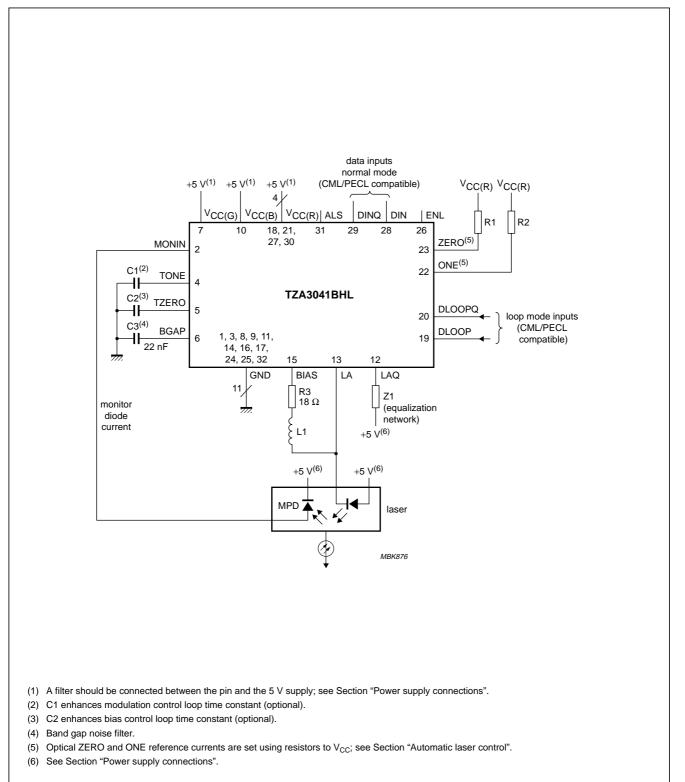
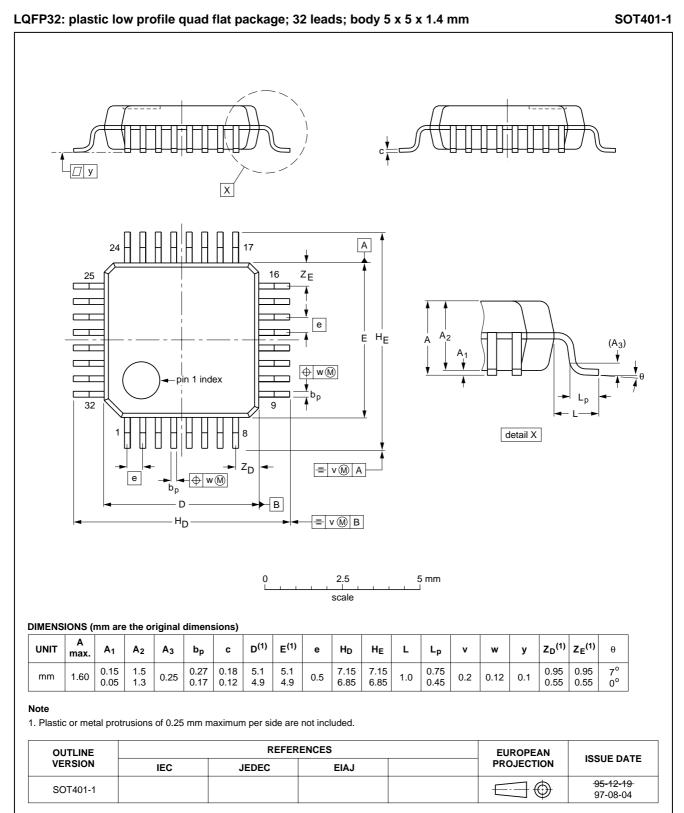



Fig.9 Application diagram showing the TZA3041BHL configured for 1.2 Gbits/s (Gigabit Ethernet/Fibre Channel).

TZA3041AHL; TZA3041BHL; TZA3041U

PACKAGE OUTLINE

SOLDERING

Introduction

There is no soldering method that is ideal for all IC packages. Wave soldering is often preferred when through-hole and surface mounted components are mixed on one printed-circuit board. However, wave soldering is not always suitable for surface mounted ICs, or for printed-circuits with high population densities. In these situations reflow soldering is often used.

This text gives a very brief insight to a complex technology. A more in-depth account of soldering ICs can be found in our *"Data Handbook IC26; Integrated Circuit Packages"* (order code 9398 652 90011).

Reflow soldering

Reflow soldering techniques are suitable for all LQFP packages.

Reflow soldering requires solder paste (a suspension of fine solder particles, flux and binding agent) to be applied to the printed-circuit board by screen printing, stencilling or pressure-syringe dispensing before package placement.

Several methods exist for reflowing; for example, infrared/convection heating in a conveyor type oven. Throughput times (preheating, soldering and cooling) vary between 50 and 300 seconds depending on heating method. Typical reflow peak temperatures range from 215 to 250 °C.

Wave soldering

Wave soldering is **not** recommended for LQFP packages. This is because of the likelihood of solder bridging due to closely-spaced leads and the possibility of incomplete solder penetration in multi-lead devices.

CAUTION

Wave soldering is NOT applicable for all LQFP packages with a pitch (e) equal or less than 0.5 mm.

TZA3041AHL; TZA3041BHL; TZA3041U

If wave soldering cannot be avoided, for LQFP packages with a pitch (e) larger than 0.5 mm, the following conditions must be observed:

- A double-wave (a turbulent wave with high upward pressure followed by a smooth laminar wave) soldering technique should be used.
- The footprint must be at an angle of 45° to the board direction and must incorporate solder thieves downstream and at the side corners.

During placement and before soldering, the package must be fixed with a droplet of adhesive. The adhesive can be applied by screen printing, pin transfer or syringe dispensing. The package can be soldered after the adhesive is cured.

Maximum permissible solder temperature is 260 °C, and maximum duration of package immersion in solder is 10 seconds, if cooled to less than 150 °C within 6 seconds. Typical dwell time is 4 seconds at 250 °C.

A mildly-activated flux will eliminate the need for removal of corrosive residues in most applications.

Repairing soldered joints

Fix the component by first soldering two diagonallyopposite end leads. Use only a low voltage soldering iron (less than 24 V) applied to the flat part of the lead. Contact time must be limited to 10 seconds at up to 300 °C. When using a dedicated tool, all other leads can be soldered in one operation within 2 to 5 seconds between 270 and 320 °C.

TZA3041AHL; TZA3041BHL; TZA3041U

DEFINITIONS

Data sheet status			
Objective specification	cification This data sheet contains target or goal specifications for product development.		
Preliminary specification	This data sheet contains preliminary data; supplementary data may be published later.		
Product specification	This data sheet contains final product specifications.		
Limiting values			
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.			
Application information			
Where application information is given, it is advisory and does not form part of the specification.			

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.

TZA3041AHL; TZA3041BHL; TZA3041U

NOTES

Philips Semiconductors – a worldwide company

Argentina: see South America Australia: 34 Waterloo Road, NORTH RYDE, NSW 2113, Tel. +61 2 9805 4455, Fax. +61 2 9805 4466 Austria: Computerstr. 6, A-1101 WIEN, P.O. Box 213, Tel. +43 160 1010, Fax. +43 160 101 1210 Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211, Volodarski Str. 6, 220050 MINSK, Tel. +375 172 200 733, Fax. +375 172 200 773 Belgium: see The Netherlands Brazil: see South America Bulgaria: Philips Bulgaria Ltd., Energoproject, 15th floor, 51 James Bourchier Blvd., 1407 SOFIA, Tel. +359 2 689 211, Fax. +359 2 689 102 Canada: PHILIPS SEMICONDUCTORS/COMPONENTS, Tel. +1 800 234 7381 China/Hong Kong: 501 Hong Kong Industrial Technology Centre, 72 Tat Chee Avenue, Kowloon Tong, HONG KONG, Tel. +852 2319 7888, Fax. +852 2319 7700 Colombia: see South America Czech Republic: see Austria Denmark: Prags Boulevard 80, PB 1919, DK-2300 COPENHAGEN S, Tel. +45 32 88 2636, Fax. +45 31 57 0044 Finland: Sinikalliontie 3, FIN-02630 ESPOO, Tel. +358 9 615800, Fax. +358 9 61580920 France: 51 Rue Carnot, BP317, 92156 SURESNES Cedex, Tel. +33 1 40 99 6161, Fax. +33 1 40 99 6427 Germany: Hammerbrookstraße 69, D-20097 HAMBURG, Tel. +49 40 23 53 60, Fax. +49 40 23 536 300 Greece: No. 15, 25th March Street, GR 17778 TAVROS/ATHENS, Tel. +30 1 4894 339/239, Fax. +30 1 4814 240 Hungary: see Austria India: Philips INDIA Ltd, Band Box Building, 2nd floor, 254-D, Dr. Annie Besant Road, Worli, MUMBAI 400 025, Tel. +91 22 493 8541, Fax. +91 22 493 0966 Indonesia: PT Philips Development Corporation, Semiconductors Division, Gedung Philips, Jl. Buncit Raya Kav.99-100, JAKARTA 12510, Tel. +62 21 794 0040 ext. 2501, Fax. +62 21 794 0080 Ireland: Newstead, Clonskeagh, DUBLIN 14 Tel. +353 1 7640 000, Fax. +353 1 7640 200 Israel: RAPAC Electronics, 7 Kehilat Saloniki St, PO Box 18053, TEL AVIV 61180, Tel. +972 3 645 0444, Fax. +972 3 649 1007 Italy: PHILIPS SEMICONDUCTORS, Piazza IV Novembre 3, 20124 MILANO, Tel. +39 2 6752 2531, Fax. +39 2 6752 2557 Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku, TOKYO 108-8507, Tel. +81 3 3740 5130, Fax. +81 3 3740 5077 Korea: Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL, Tel. +82 2 709 1412, Fax. +82 2 709 1415 Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR, Tel. +60 3 750 5214, Fax. +60 3 757 4880 Mexico: 5900 Gateway East, Suite 200, EL PASO, TEXAS 79905,

Mexico: 5900 Gateway East, Suite 200, EL PASO, TEXAS 79905, Tel. +9-5 800 234 7381

For all other countries apply to: Philips Semiconductors, International Marketing & Sales Communications, Building BE-p, P.O. Box 218, 5600 MD EINDHOVEN, The Netherlands, Fax. +31 40 27 24825

Middle East: see Italy

Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB, Tel. +31 40 27 82785, Fax. +31 40 27 88399 New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND, Tel. +64 9 849 4160, Fax. +64 9 849 7811 Norway: Box 1, Manglerud 0612, OSLO, Tel. +47 22 74 8000, Fax. +47 22 74 8341 Pakistan: see Singapore Philippines: Philips Semiconductors Philippines Inc., 106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI, Metro MANILA, Tel. +63 2 816 6380, Fax. +63 2 817 3474 Poland: UI. Lukiska 10, PL 04-123 WARSZAWA, Tel. +48 22 612 2831, Fax. +48 22 612 2327 Portugal: see Spain Romania: see Italy Russia: Philips Russia, UI. Usatcheva 35A, 119048 MOSCOW, Tel. +7 095 755 6918, Fax. +7 095 755 6919 Singapore: Lorong 1, Toa Payoh, SINGAPORE 319762, Tel. +65 350 2538, Fax. +65 251 6500 Slovakia: see Austria Slovenia: see Italy South Africa: S.A. PHILIPS Pty Ltd., 195-215 Main Road Martindale, 2092 JOHANNESBURG, P.O. Box 7430 Johannesburg 2000, Tel. +27 11 470 5911, Fax. +27 11 470 5494 South America: Al. Vicente Pinzon, 173, 6th floor, 04547-130 SÃO PAULO, SP, Brazil, Tel. +55 11 821 2333, Fax. +55 11 821 2382 Spain: Balmes 22, 08007 BARCELONA Tel. +34 93 301 6312, Fax. +34 93 301 4107 Sweden: Kottbygatan 7, Akalla, S-16485 STOCKHOLM, Tel. +46 8 5985 2000, Fax. +46 8 5985 2745 Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH, Tel. +41 1 488 2741 Fax. +41 1 488 3263 Taiwan: Philips Semiconductors, 6F, No. 96, Chien Kuo N. Rd., Sec. 1, TAIPEI, Taiwan Tel. +886 2 2134 2865, Fax. +886 2 2134 2874 Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd. 209/2 Sanpavuth-Bangna Road Prakanong, BANGKOK 10260, Tel. +66 2 745 4090, Fax. +66 2 398 0793 Turkey: Talatpasa Cad. No. 5, 80640 GÜLTEPE/ISTANBUL, Tel. +90 212 279 2770. Fax. +90 212 282 6707 Ukraine: PHILIPS UKRAINE, 4 Patrice Lumumba str., Building B, Floor 7, 252042 KIEV, Tel. +380 44 264 2776, Fax. +380 44 268 0461 United Kingdom: Philips Semiconductors Ltd., 276 Bath Road, Hayes, MIDDLESEX UB3 5BX, Tel. +44 181 730 5000, Fax. +44 181 754 8421 United States: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409, Tel. +1 800 234 7381 Uruguay: see South America Vietnam: see Singapore Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD, Tel. +381 11 625 344, Fax.+381 11 635 777 Internet: http://www.semiconductors.philips.com

SCA60

© Philips Electronics N.V. 1998

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.

The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.

Printed in The Netherlands

425102/200/01/pp20

Date of release: 1998 Aug 24

Document order number: 9397 750 04085

Let's make things better.

